If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+36x-52=0
a = 4; b = 36; c = -52;
Δ = b2-4ac
Δ = 362-4·4·(-52)
Δ = 2128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2128}=\sqrt{16*133}=\sqrt{16}*\sqrt{133}=4\sqrt{133}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-4\sqrt{133}}{2*4}=\frac{-36-4\sqrt{133}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+4\sqrt{133}}{2*4}=\frac{-36+4\sqrt{133}}{8} $
| 7+y=5(2y-1)+3y | | 1/2x(-1/2)=1/4 | | 7(p-75)=84 | | 5(x-3)+2=-13+5 | | 5n+8−7n=−4n+1 | | 6x-7-x=-23+x | | 14-8=3x-8 | | -15=8(v+5)+3v | | x+7=18–x | | 2(x-5)+4x=38 | | Y-(-16y)+(-20y)=-18 | | 3.7g+13.74=3.1g+2.1 | | -3(x-5)=2(2x+5) | | -4(2x-1)=-10x+12. | | c4− –5=9 | | 1-4x+4x=4-x | | -1x+(-14)-5x=-70 | | -4(-4y+8)=-64 | | 9x+5=27x-5 | | 3x+(2x+5)+(2x-15)+(2x+10)=360 | | -x+3(1+x)=3(x+2) | | 14x(-14)=196 | | .8+4m=16 | | 4g-34=34 | | 0.5(6x-4)=0.75(12x+8) | | 2x+36=3x-8 | | -3(4y-6)+8y=6(y+4) | | V=1/6(w-3);w | | 5/2x=-2+17 | | 11/8k=2/3 | | 3y+2y+5+y=0 | | 4(8c-8)=500 |